TSG Chapter VI. Treatment of Textiles - Section C. Mechanical Cleaning

From Wiki

Textiles.gif Textile Specialty Group Conservation Wiki
Back to Chapter VI. Treatment of Textiles
Back to Textiles Chapter List

Contributors: Originally drafted by Kara Fox.
Your name could be here! Please contribute.

Copyright: 2018. The Textile Wiki pages are a publication of the Textile Specialty Group of the American Institute for Conservation of Historic and Artistic Works.
The Textile Wiki pages are published for the members of the Textile Specialty Group. Publication does not endorse or recommend any treatments, methods, or techniques described herein.


Mechanical Cleaning

Archaeological Textiles

Textiles are comprised of animal or plant fibers that have been shaped or woven into fabric. Animal fibers such as wool consist primarily of protein and are more resistant to decay. Plant fibers such as cotton consist primarily of cellulose and are more susceptible to bacteria and decay in archaeological environments. The most common textile materials found on archaeological sites are cotton, wool, and silk (Hamilton 2011).

The treatment of a textile depends on the condition when found in the archaeological record. Because textiles are typically fragile from various factors of deterioration including original use, hydrolysis, staining, and oxidation, it is imperative that the textile is handled with great care. Mechanical cleaning a textile is the manual process of using tools to remove unwanted silt, dirt, and sediment that have adhered to the surface of the textile (CCI 2011).

Textiles tend to trap dust and sediment due to their fibrous texture and porous nature (CCI 2011). If left in place, dust and sediment can be a source of further deterioration allowing silt particles to rupture delicate animal and plant fibers (Cronyn 1990). For example, “gritty particles (especially crystalline materials) have sharp edges that abrade and cut fibres when the textile is moved or manipulated” (CCI 2011). Dust and sediment particles can attract destructive materials from the atmosphere including acidic or oxidizing agents that, combined with moisture can instigate destructive chemical reactions (CCI 2011).

Mechanical cleaning of archaeological textiles is effective for removing the surface particles. The removal of stains often requires chemical cleaning or washing that should only be carried out by a professional textile conservator (CCI 2011). Prior to cleaning the textile, it is important to understand the nature of the soil in regards to the context of the artifact. For example, “battlefield on a military uniform may provide documentary evidence about how the textile was used, and should be retained” (CCI 2011). Dirt and sediment that has accumulated due to the location or storage of the artifact usually has no significance and should be removed. The condition of the textiles must also be considered. If a textile is in good, sturdy condition it is unlikely mechanical cleaning with soft brushes or a low suction vacuum will damage the artifact. However, if the textile appears fragile with unstable fibers the object should not be mechanically cleaned (CCI 2011).

The mechanical cleaning of a textile involves the use of tools such as scalpels, dental picks, brushes, sponges, ultrasonic tools, and low suction vacuum cleaners. Before the cleaning begins, it is important to place the textile on a clean flat surface or rigid support based on the needs of the textile (Peacock 2005). Light suction with a vacuum cleaner can be one of the easiest ways to mechanically clean a textile. The entire surface of the textile should be covered with a nylon monofilament screening to protect the textile and prevent loose fibers from being drawn into the nozzle of the cleaner (Finch et al 1977). The screening should be firm and rigid allowing the nozzle of the cleaner to move over the entire surface of the textile until it has been thoroughly cleaned. The use of nylon monofilament screening makes mechanical cleaning safe for the textile and efficient and easy for the operator (Finch et al 1977).

When textiles are too fragile for vacuum cleaning, tool such as brushes, sponges or tweezers might be useful (Cronyn 1990). These tools can be found at artist suppliers or cosmetic counters. Tweezers can be used to carefully remove particles by picking them off, when done carefully this method is less forceful than vacuum cleaning (CCI 2011). When using brushes and sponges follow the direction of the warp or weft pattern if one is present. Gently roll brushes or sponges over the soiled textile surface instead of dragging; this will prevent further deterioration of the textile (Finch et al 1977). Work slowly and methodically to clean the entire surface of the textile, repeating the process on the reverse side.

Ultimately, mechanical cleaning is not always possible with all textiles. Textiles can often times be too delicate to undergo the manual process of removing dirt, sediment, and staining. A conservator who specializes in textile conservation should carefully evaluate these textiles for future cleaning and treatment.

References

Canadian Conservation Institute. 2011. CCI Notes 13/16 "Mechanical Surface Cleaning of Textiles". In: CCI Notes.1-5. Accessed March 30, 2013. [1].

Cronyn, J.M. 1990. The Elements of Archaeological Conservation. Routledge, London.

Finch, Karen, and Greta Putnam. 1977. Caring for Textiles. London: Barrie & Jenkins.

Hamilton, Donny. 2011. "Textile Conservation". In: Conservation Research Laboratory of the Nautical Archaeology Program. Texas A&M University. Accessed March 30, 2013. [2].

Peacock, E. 2005. "Investigation of Conservation Methods for a Textile Recovered from the American Civil War Submarine H.L. Hunley (1864)". In: Proceedings of the 9th Wet Organic Archaeological Materials Conference. Copenhagen.497-512.

Back to Chapter VI. Treatment of Textiles
Back to Textiles Chapter List